1,834 research outputs found

    1/Nc1/N_c Rotational Corrections to gAg_A in the NJL Model and Charge Conjugation

    Full text link
    We show that the 1/Nc1/N_c rotational corrections to gAg_A, derived using the semiclassical quantization scheme in the NJL model, possess correct properties under charge conjugation.Comment: 4 pages, revtex, no figures, final version published in Phys.Rev.C52(1995)42

    Shear dispersion in dense granular flows

    Full text link
    We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the P\'eclet number squared, as in classical Taylor--Aris dispersion of molecular solutes. An extensions to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.Comment: 6 pages, 2 figures, Springer svjour3 format; to appear in Granular Matte

    Flow rate--pressure drop relation for deformable shallow microfluidic channels

    Full text link
    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\"unther, A. \& Jensen, K.\ F.}\ 2006 Flow-induced deformation of shallow microfluidic channels.\ \textit{Lab Chip} \textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.Comment: 20 pages, 6 figures; v2 minor revisions, accepted for publication in the Journal of Fluid Mechanic

    Conformational effects on the Circular Dichroism of Human Carbonic Anhydrase II: a multilevel computational study

    Get PDF
    Circular Dichroism (CD) spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII), with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory) were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD) could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions

    Magnetic Moments of the SU(3) Octet Baryons in the semibosonized SU(3) Nambu-Jona-Lasinio Model

    Get PDF
    We investigate the magnetic moments of the SU(3) octet baryons in the framework of the SU(3)SU(3) semibosonized Nambu--Jona--Lasinio model. The rotational 1/Nc1/N_c corrections and strange quark mass in linear order are taken into account. We derive general relations between magnetic moments of the SU(3) octet baryons, based on the symmetry of our model. These relations indicate that higher order corrections such as O(ms/Nc)O(m_s/N_c) and O(ms2)O(m^{2}_{s}) are relatively small. The magnetic moments of the octet baryons predicted by our model are quantitatively in a good agreement with experimental results within about 15%\%.Comment: 17 pages, RevTex, 1 postscript figur
    • …
    corecore